This review, written by Dr. David A. Barzilai, from Geneva College of Longevity Science and Healthspan Coaching LLC, summarizes the outstanding scientific contributions of the late Dr. Mikhail “Misha” Blagosklonny, Founding Editor-in-Chief of Aging. Dr. Blagosklonny’s research changed how researchers and scientists think about aging by introducing a new theory and promoting the use of rapamycin, an mTOR inhibitor, to slow aging and extend healthy life. Published shortly after his passing, this review honors Dr. Blagosklonny’s work and highlights how it challenged the traditional belief that aging is caused mainly by accumulated damage in the body.
Instead of describing aging as an accumulation of cellular damage, Dr. Blagosklonny’s Hyperfunction Theory redefined it as an ongoing biological process that goes into “overdrive” and leads to age-related diseases such as cancer, cardiovascular problems, and memory loss.
He identified the mTOR pathway—an important growth signal in the body—as a key driver of this process. His research showed that by using rapamycin, which slows down mTOR activity, it is possible to reduce aging-related diseases and promote longer, healthier lives.
Research supports many of Dr. Blagosklonny’s predictions about rapamycin’s benefits. Studies show that it can improve immune responses in older adults, making vaccines more effective. Other studies suggest rapamycin may help protect the heart, reduce harmful brain inflammation, and prevent the buildup of proteins linked to Alzheimer’s disease. Dr. Blagosklonny also proposed that rapamycin could reduce cancer risk by preventing excessive growth signals that contribute to tumor development.
Believing in rapamycin’s potential as a “longevity drug,” Dr. Blagosklonny advocated for its careful use with medical supervision and precise dosing. He called for further research and even envisioned “longevity clinics” where personalized anti-aging treatments could be provided. The review also highlights ongoing scientific efforts to refine rapamycin therapies and explore new options with fewer side effects.
In conclusion, Dr. Blagosklonny has inspired a global shift toward viewing aging as a condition that can be managed rather than an inevitable decline. His research has left a legacy in the fields of geroscience, aging, and cancer prevention.
“This contribution will undoubtedly be remembered in the coming decades and beyond as an innovative contribution to our theoretical grasp of the aging process and a foundation for exploring effective therapeutic approaches.”
Click here to sign up for free Altmetric alerts about this article.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
“[…] adolescents and adults with SCD still experience higher rates of aging-related morbidity and early mortality.”
Imagine being 15 years old but having a body that shows signs of aging as if you are decades older. For some young people with sickle cell disease (SCD), this is a reality. A new study published in Volume 16, Issue 21 of Aging shows that SCD causes the body to age much faster than normal. The research not only explains why this happens but also points to new ways to help people with the disease live healthier, longer lives.
What Is Sickle Cell Disease?
SCD is a genetic condition that changes the shape of red blood cells. Instead of being round, like a doughnut, the cells become curved like a sickle (a farming tool). These misshapen cells struggle to move through blood vessels, often blocking blood flow and leading to pain, organ damage, and other health problems. Even with modern treatments, they can experience complications like those seen in older adults, such as weaker bones, frailty, and organ failure. In the study “Adolescents and young adults with sickle cell disease exhibit accelerated aging with elevated T-cell p16INK4a expression,” researchers wanted to understand why this happens and what it means for people with the disease.
The Study: Link Between Sickle Cell Disease and Aging
To understand the connection between SCD and accelerated aging, researchers from the University of North Carolina at Chapel Hill and their collaborators focused on a protein called p16INK4a, or simply p16. This protein builds up in cells as people age. High levels of p16 indicate that a person’s cells are aging faster than normal.
They measured p16 levels in 18 young people with SCD, aged 15 to 27, and compared them to 27 healthy individuals of the same age.
The Challenge: More Than a Genetic Disorder
Individuals with SCD often experience chronic inflammation, anemia, and physical stress due to their condition. These factors affect their immediate health but also trigger cellular changes that mimic aging, making it vital to explore potential therapies.
The Results: Sickle Cell Disease Patients Aged 43 Years Faster
The results were startling. Young people with SCD had significantly higher levels of p16 than their healthy peers, indicating that their bodies were biologically much older. On average, their p16 levels suggested an additional 43 years of biological aging. Even the youngest participant, a 15-year-old with SCD, had more p16 than anyone in the non-SCD group.
The Breakthrough: Targeting Cellular Aging for Better Outcomes
The study reveals why young people with SCD face age-related health problems much earlier than their peers. These findings highlight the urgent need for treatments targeting cellular aging. One promising area of research involves senolytics, drugs designed to remove senescent (“old”) cells from the body. By slowing the aging process, senolytics could significantly improve both the quality and length of life for SCD patients. Additionally, measuring p16 levels may serve as a valuable tool to identify high-risk patients and enable more personalized treatment strategies.
The Impact: Why These Findings Matter
These findings elucidate how SCD accelerates biological aging, significantly impacting quality of life and reducing healthy years. Understanding the role of cellular aging allows to redefine SCD care, moving from symptom management to addressing the causes of accelerated aging.
The impact of this study also extends to other chronic diseases by emphasizing the importance of targeting cellular aging markers. By focusing on cellular senescence, this research lays the groundwork for therapies that improve both lifespan and healthspan—the years of life spent in good health.
Future for Sickle Cell Disease Research
While this study is a crucial first step, further research is needed to confirm these findings and explore potential therapies. Larger studies with more diverse groups of SCD patients, as well as long-term follow-ups, will help deepen our understanding of how aging affects the disease and the effectiveness of new treatments like senolytics. Additionally, researchers are also investigating other markers of aging.
Conclusion
This study highlights the long-term impact of SCD on young patients, shedding light on how accelerated aging contributes to their health challenges. For many, these findings represent a future with better and more efficient treatments. By addressing the causes of accelerated aging, innovative therapies could significantly enhance the lives of individuals with SCD, potentially leading to healthier and longer lives.
Click here to read the full research paper in Aging.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
“Sleep problems in dementia patients are not only common but also contribute to a faster progression of cognitive decline and increased burden on caregivers.”
Sleep is essential for everyone, but for those living with dementia, it is vital for better health and quality of life. Addressing sleep problems in dementia care is a crucial step toward improving life for both patients and caregivers.
Dementia and Sleep
Sleep is critical for brain health and well-being, but it is often a struggle for people with dementia. Dementia, a condition that affects memory, thinking, and daily life, is frequently complicated by other health issues like heart disease, diabetes, and anxiety. On top of these challenges, sleep problems such as insomnia and sleep apnea are common, making life even harder for patients and their caregivers.
Addressing sleep issues is key to improving the lives of people with dementia and easing the burden on their support systems. Recognizing this need, researchers Upasana Mukherjee, Ujala Sehar, Malcolm Brownell, and P. Hemachandra Reddy from Texas Tech University Health Sciences Center conducted an extensive review. Published in Aging, Volume 16, Issue 21, their work aims to update healthcare professionals on these issues and promote new practices in dementia care.
The Study: Update on Sleep and Dementia’s Connection
The review emphasized how untreated sleep issues can worsen cognitive decline, demonstrating that sleep health is not just a symptom of dementia but an integral part of its progression.
The Challenge: Why Sleep Problems are Overlooked but Critical
People with dementia often face significant sleep disruptions. They might wake up multiple times during the night, feel excessively sleepy during the day, or move around at night. This lack of restorative sleep worsens memory loss and confusion. For example, untreated sleep apnea reduces oxygen flow to the brain, further harming cognitive function. Meanwhile, caregivers experience immense stress and burnout from managing sleepless nights and restless behavior.
Despite these profound effects, many dementia treatment strategies fail to adequately address sleep issues, treating them as secondary problems rather than main components of care. Understanding the relationship between sleep and dementia is critical for designing effective interventions.
The Breakthrough: How Improving Sleep Can Transform Dementia Care
The study highlighted that sleep problems are deeply linked to the progression of dementia rather than being merely side effects. Conditions like cardiovascular disease and diabetes often worsen these disturbances, creating a cycle where poor health accelerates cognitive decline.
The findings showed that improving sleep quality can bring significant benefits. One solution is addressing sleep apnea, which not only improves sleep quality but also enhances brain function and lowers the risk of related health issues such as heart disease. Non-drug therapies such as structured bedtime routines, light therapy, and anxiety management have shown promise in improving sleep for dementia patients. Cognitive-behavioral therapy for insomnia has been especially effective in managing chronic sleep issues. These interventions not only improve brain health but also reduce caregiver stress, promoting a healthier and more supportive environment for everyone involved.
The Future of Dementia Care
Integrating sleep care into dementia treatment is the way forward. Addressing sleep disturbances together with other health conditions like diabetes and anxiety can have a profound impact. Personalized approaches, such as setting up calming bedtime routines and improving sleep environments, can make a real difference. Future research should focus on refining these strategies and equipping caregivers with better tools to manage sleep challenges.
Conclusion
Sleep disturbances are more than just a symptom of dementia. They are a major factor driving this condition’s progression and affecting quality of life. By prioritizing sleep health in dementia care, memory loss can be slower, day-to-day well-being can be improved, and burden on caregivers can be reduced. Holistic care approaches that address both sleep and overall health hold the key to improving quality of life for dementia patients and their families.
Click here to read the full research paper in Aging.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
Key Highlights from the Future of Aging Research Mixer 2024
The event kicked off with inspiring opening remarks and a keynote by George Church, professor at Harvard Medical School, founding member of the Wyss Institute, and co-founder of over 50 biotech companies. He was joined by Kat Kajderowicz, an MIT PhD student and Principal at age1. Together, they highlighted the interdisciplinary nature of aging research and its immense potential to drive transformative advancements.
Jesse Poganik, HMS Instructor in Medicine and Executive Co-Director of the Biomarkers of Aging Consortium, discussed the evolution of aging science and the critical role biomarkers play in understanding aging processes and assessing the effectiveness of interventions aimed at slowing or reversing age-related changes.
Alex Colville, co-founder and general partner at age1, explained how venture capital can accelerate innovation in longevity biotechnology. He shared career advice for aspiring researchers and paid tribute to his mentor, Dr. David Sinclair, a pioneer in aging research.
These talks highlighted the importance of mentorship, interdisciplinary collaboration, and investment in driving progress in the aging research field.
Empowering Future Aging Science Leaders
A majority of the attendees were students from Boston-area universities including Harvard, MIT, UMass and BU. These future scientists, entrepreneurs, and innovators engaged in meaningful discussions about research, career paths, and publishing in academic journals. Many expressed interest in journals like Aging (Aging-US) and sought advice on how to publish their work.
The “Future of Aging Research Mixer 2024” showcased the passion, collaboration, and innovation within the aging research community. Through its sponsorship, Aging (Aging-US) reaffirmed its commitment to fostering a vibrant network of talent and supporting the voices of young, passionate researchers. Initiatives like this inspire the next generation of scientists and entrepreneurs, driving sustained growth and transformative impact in the field.
Beyond the event, the Aging Initiative at Harvard University strengthens the community through ongoing programs like journal clubs, guest lectures, and informal lunches with professors. These initiatives encourage skill-building, idea-sharing, and mentorship, preparing students for impactful careers in aging science.
Why We Support Aging Research
Aging (Aging-US) was founded in 2008 by visionary scientists—the late Dr. Mikhail (Misha) Blagosklonny, the late Dr. Judith Campisi, and Dr. David Sinclair—with a clear mission: to create a journal by scientists, for scientists, so the researchers can publish their ideas, theories (sometimes unconventional) and studies on the rapidly developing aging field. Since then, we have remained dedicated to advancing the understanding of aging and age-related diseases, including cancer, a leading health challenge in today’s aging world.
Supporting initiatives like theAging Initiative at Harvard University and events such as the “Future of Aging Research Mixer 2024”is central to our mission. By supporting young researchers, we strive to drive meaningful advancements in the field and ensure it receives the recognition and resources it deserves. We are deeply committed to supporting initiatives that empower scientists and promote collaboration, mentorship, and innovation.
Sponsoring this initiative is more than an investment—it’s a commitment to the future of aging science and a healthier, longer life for all.
As we look to the future, we are inspired by the passion and talent within this growing field. Together, through continued collaboration and investment, we can shape a world where aging research leads to healthier and longer lives.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
“The integration of artificial intelligence (AI), biomarkers, ageing biology, and longevity medicine stands as a cornerstone for extending human healthy lifespan.”
Imagine a future where we not only live longer but stay healthy throughout those extra years. Thanks to recent breakthroughs in biotechnology and artificial intelligence (AI) in healthcare, this vision is closer to becoming a reality.
Advancements in Aging Research
Aging research has made significant progress in recent years by combining disciplines like biology, technology, and medicine to tackle the challenges of extending healthspans and reducing age-related diseases. While people today live longer than ever before, extending our “healthspan”—the years we stay active and illness-free—remains challenging. AI and health biomarkers (biological indicators of our body’s condition) are now key tools in the pursuit of longer, healthier lives.
The work summarizes insights from the 2023 Aging Research and Drug Discovery Meeting. Researchers from renowned institutions explored how AI, biomarkers, and clinical applications can work together to enhance longevity. This fusion, termed “longevity biotechnology,” promises to transform healthcare from reactive treatments to proactive, preventive measures focused on staying healthy as we age.
The Challenge: Targeting Multiple Health Conditions with Longevity Biotechnology
Traditional aging research often targets single diseases, but most elderly individuals experience multiple chronic conditions. Addressing this complex challenge requires identifying biological markers that indicate aging and predicting health risks before diseases manifest.
The Breakthrough: AI in Biomarker Discovery for Aging
The study highlights how AI can accelerate the discovery of biomarkers, allowing scientists to understand aging at the cellular level. By using machine learning to identify unique patterns, researchers can estimate biological age, discover potential treatments, and evaluate the impact of lifestyle changes on health. This personalized approach enables healthcare providers to create prevention and treatment plans suited to each person’s unique health needs.
The Future of Healthcare: Preventive, AI-Driven Longevity Treatments
Currently, healthcare often focuses on managing diseases as they arise. However, these AI-driven tools could bring about a shift to preventive healthcare. Instead of waiting for age-related illnesses, clinicians could use AI insights to address aging’s root causes, improving health before issues arise.
While the promise of AI in healthcare is significant, the research team emphasizes that further investment is needed to make these AI-driven approaches accessible and accurate. With continued advancements, longevity biotechnology could become a standard part of healthcare, offering a new way to maintain vitality and well-being as we age.
Conclusion
Longevity biotechnology represents a groundbreaking shift, with AI and biomarkers helping us envision a future of healthier, longer lives. This approach brings us closer to understanding and managing the aging process, making extended healthspans a real possibility.
Click here to read the full research paper in Aging.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
Bone mass declines with age, and the anabolic effects of skeletal loading decrease. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear.
Researchers Christopher J. Chermside-Scabbo, John T. Shuster, Petra Erdmann-Gilmore, Eric Tycksen, Qiang Zhang, R. Reid Townsend, Matthew J. Silva from Washington University School of Medicine and Washington University in St. Louis, MO, share their findings which underscore the need for complementary protein-level assays in skeletal biology research.
In this study, the tibias of young-adult and old mice were analyzed using proteomics and RNA-seq techniques, while the femurs were examined for age-related changes in bone structure. A total of 1,903 proteins and 16,273 genes were detected through these analyses. Multidimensional scaling demonstrated a clear separation between the young-adult and old samples at both the protein and RNA levels. Furthermore, 93% of the detected proteins were also identifiable by RNA-seq, and the abundance of these shared targets showed a moderately positive correlation. Additionally, differential expression analysis revealed 183 age-related differentially expressed proteins and 2,290 differentially expressed genes between young-adult and old bone samples.
Proteomic and RNA-seq analyses were conducted on paired tibias from young-adult and old mice to study age-related differences and the effects of mechanical loading on bone formation. The results showed distinct differences in protein and gene expression between the two age groups. Many of the significantly upregulated and downregulated proteins and genes in old bone have been associated with bone phenotypes in genome-wide association studies (GWAS). The study also identified age-related differentially expressed proteins and genes involved in bone phenotypes and aging processes. Integrated analysis with GWAS data revealed eight targets that may be relevant to human disease, including Asrgl1 and Timp2. Furthermore, co-expression analysis identified an age-related module indicating baseline differences in TGF-beta and Wnt signaling. Baseline age-related differences in ECM/MMPs and TGF-beta signaling were detected in both the proteome and transcriptome. Following mechanical loading, the proteome showed distinct pathway, protein class, and process enrichments, with temporal differences observed between young-adult and old mice.
Overall, the findings provide valuable insights into the molecular mechanisms underlying age-related changes and the response to mechanical loading in mouse long bones.
DISCUSSION
This study aimed to compare the proteome and transcriptome of tibias from young-adult and old mice under baseline conditions and analyze changes in the bone proteome in response to mechanical loading. The researchers successfully developed a proteomics method to detect protein-level changes in cortical bone and used it to perform proteomic and RNA-seq analyses on tibias from both young-adult and old mice. They observed a moderately positive correlation between the proteome and transcriptome in bone tissue. Age-related differences were detected at both the protein and RNA levels, with altered TGF-beta signaling and changes in extracellular matrix (ECM) and matrix metalloproteinases (MMPs) protein and transcript levels in old bones. The researchers identified Tgfb2 as the most reduced Tgfb transcript in old bone, predominantly expressed by osteocytes. Proteomic analysis of the loading response showed modest changes compared to age-related differences, with fewer protein-level changes in old bones. The findings suggest that proteomics is a valuable tool for studying bone biology and can provide insights into protein-specific changes in aging.
The data obtained from the analysis were subjected to various statistical and data exploration techniques. Differential expression analysis was performed to compare protein abundance between different groups. Total RNA was extracted from the bones using TRIzol, and its integrity and concentration were measured. The bones were also processed for paraffin sectioning and RNA in situ hybridization.
Overall, the study involved the collection and analysis of bone samples from female mice to investigate age-related changes and loading responses in the skeletal system.
Click here to read the full research paper in Aging.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
“[…] our results suggest that sharing housing with others in early life might influence whole-life attributes, potentially leading to specific life history traits beyond the typical relationship between the growth rate and lifespan.”
A study on African turquoise killifish examined the impact of housing density on juvenile growth. Newly hatched fish were kept in different densities ranging from 1 to 40 fish per tank. It was found that lower housing densities resulted in faster growth, with fish in single housing growing significantly larger than those in group housing. Additionally, single-housed fish reached sexual maturity earlier compared to group-housed fish at higher densities. Comparisons between group-housed and single-housed fish showed that housing conditions in the juvenile stage did not affect the appearance changes during sexual maturation.
As the fish progressed to middle-aged adults, the rate of increase in body length slowed down, while body weight continued to increase. Differences in body weight between group-housed and single-housed fish persisted into old age, suggesting potential differences in body composition. Surprisingly, single-housed fish had a longer mean adult lifespan compared to group-housed fish, contradicting the commonly held belief that faster growth leads to shorter lifespan. Lower housing densities during the juvenile stage were also found to extend adult lifespan, further challenging the inverse correlation between growth rate and lifespan. These findings suggest that lower housing densities promote accelerated growth in the juvenile stage of African turquoise killifish.
The study also found that single-housed fish had a longer adult lifespan compared to group-housed fish. This led to the suspicion that the egg-laying period of single-housed fish might also be longer. To investigate this, the researchers conducted weekly monitoring of the number of eggs laid until the old adult stage. In group-housed fish, the number of eggs laid was high for the first two weeks, followed by a medium level for the subsequent five weeks, and then decreased. In contrast, single-housed fish showed a medium level of egg-laying for the first nine weeks, followed by a decrease. The cumulative number of live embryos was found to be lower in single-housed fish compared to group-housed fish. These findings suggest that while the number of eggs laid is not very high, single-housed fish have a longer egg-laying period than group-housed fish.
To investigate the potential reasons behind the reduction in offspring number and longer egg-laying period in single-housed fish, the researchers conducted RNA sequencing analysis of testes or ovaries at four life stages. These stages included the onset of sexual maturity, young adult, mature adult, and middle-aged adult. Interestingly, the analysis revealed that single-housed fish showed higher similarity to group-housed fish at earlier life stages compared to group-housed fish at the same life stage. For instance, in the testes, single-housed fish at stage II exhibited the highest similarity to group-housed fish at stage I. Similarly, in the ovaries, single-housed fish at stage II and III showed higher similarity to group-housed fish at stage I. These findings suggest that the rate of gonadal transcriptional change with life stage progression is slower in single-housed fish compared to group-housed fish.
The researchers identified differentially expressed genes (DEGs) between stage I and stage IV in group- and single-housed fish. In the testes, ribosome-related genes and cilium-related genes were highly enriched in DEGs with higher expression in stage I compared to stage IV, suggesting a link between life stage progression, testes development, and spermatogenesis. In the ovaries, growth-related genes and translation-related genes were highly enriched in DEGs with higher expression in stage I compared to stage IV, indicating a link between life stage progression, ovarian development, oogenesis, and aging. Comparing group-housed and single-housed fish at different stages, there were differences in the PC1 values, suggesting that single-housed fish exhibited slower progression of gametogenesis and gonadal maturation relative to life stage progression compared to group-housed fish.
To further investigate this, the researchers focused on specific genes related to spermatogenic differentiation, oocyte development, oocyte construction, and female gonad development. The expression of these genes showed slower changes with life stage progression in single-housed fish compared to group-housed fish in both the testes and ovaries. This suggests that single-housed fish may have slower rates of gametogenesis and gonadal maturation, leading to a lower proportion of mature sperm and oocytes in their gonads. Overall, the results indicate that, at the transcriptional level, the progression of gonadal maturation and ovarian aging is slower in single-housed fish compared to group-housed fish. This slower progression may explain the medium fecundity and extended egg-laying period observed in single-housed fish.
The liver was chosen for analysis as it plays a central role in organismal metabolic processes. Gene expression profiles of the livers were compared between group- and single-housed fish at two different ages: 7 weeks post-hatching (wph) and 14 wph. Surprisingly, despite the 2-week age difference, the correlation coefficients showed that group- and single-housed fish at 14 wph were highly similar. The researchers identified 1588 age-related differentially expressed genes (DEGs) between the two age groups. Hierarchical clustering based on the expression changes of these age-related genes demonstrated that the expression profiles of group- and single-housed fish were similar at 14 wph.
IN CONCLUSION
In summary, juvenile single housing in African turquoise killifish promotes faster growth, longer egg-laying periods, and extended lifespans compared to group housing. These findings challenge traditional assumptions about the relationship between growth and lifespan and shed light on the impact of early-life environmental conditions on overall life history.
Overall, the experiments involved maintaining and rearing the fish, measuring their body length and weight, analyzing RNA sequencing data, measuring lifespan, and counting the number of eggs laid. Statistical analysis was conducted to assess significant differences between groups.
Click here to read the full research paper in Aging.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
Researchers introduce SINGULAR, a cell rejuvenation atlas that provides a unified analysis framework to study the effects of rejuvenation strategies at the single-cell level.
Various strategies, including lifestyle changes, gene therapies, and surgical procedures, have shown promise in improving aging markers and increasing lifespan in model organisms. These interventions often have limitations, however, such as not achieving comprehensive functional improvement across tissues or facing challenges in clinical translation. To address these limitations, the researchers characterized and compared rejuvenation interventions at different biological levels. The paper introduces SINGULAR, a cell rejuvenation atlas that provides a unified analysis framework to study the effects of rejuvenation strategies at the single-cell level. By examining gene regulatory networks, intracellular signaling, cell-cell communication, and cellular processes, the atlas identifies master regulators and common targets across immune cells. SINGULAR has the potential to inform future advancements in human age reversal and aid in the selection of drugs that mimic the effects of rejuvenation interventions.
RESULTS
The authors propose a unified multiscale analysis pipeline for characterizing and comparing the effects of rejuvenation interventions. This process begins by filtering low-quality cells, normalizing expression profiles, and identifying optimal cell clustering. The data is then analyzed at various biological levels, including differential gene expression, transcriptional regulatory networks, signaling cascades, and intercellular communication.
Nine previously published single-cell RNA-seq datasets from different rejuvenation interventions were collected and analyzed, revealing technical variability that highlights the need for a standardized data processing pipeline. The analysis showed heterogeneous gene expression responses across different cell types and organs. Systemic interventions had consistent effects on multiple organs, while metformin had minimal impact. Interestingly, exercise produced the largest transcriptional effects in the liver, artery, and spinal cord, even though it primarily targets muscles.
Transcriptional regulatory networks (TRNs) were reconstructed to explore the regulatory mechanisms behind these gene expression changes. The TRNs, which averaged 72 genes, were highly hierarchical, indicating the presence of ‘master regulators’ that explain significant portions of gene expression changes.
To demonstrate the practical application of SINGULAR, the study investigated the identification of drugs that could target transcription factor (TF) master regulators and key signaling molecules. Drug-target relationships from DrugBank were analyzed to find drugs that could activate master regulators or mimic the effects of rejuvenation interventions. Interestingly, only 17 out of 239 TFs could be activated by drugs, primarily nuclear receptors, with notable exceptions like AP-1 complex proteins and Trp53. Some of these drugs, such as Curcumin and Vitamin D3, have shown rejuvenating effects on lifespan in model organisms. Key signaling molecules were found to be more druggable, with several drugs targeting specific molecules, though none targeted both genes.
The study aimed to identify master regulators and their downstream effects in rejuvenation interventions. By simulating the activation of transcription factors (TFs) within the network, the researchers quantified the number of genes regulated by each TF. They discovered 493 TFs with non-zero activity across various conditions, though most acted as master regulators in only a few cases. The study also highlighted key differences between TFs involved in aging-related activity changes and those regulating rejuvenation. Notably, the AP-1 complex, consisting of Fos and Jun, emerged as a common master regulator across multiple interventions. The researchers also identified TFs linked to aging and validated their potential rejuvenating effects experimentally. They also explored crosstalk between TFs and signaling pathways, finding negative enrichment of aging gene sets in several integrated networks. Overall, the findings offer valuable insights into the regulatory mechanisms and potential rejuvenating effects of master regulators and signaling molecules involved in rejuvenation interventions.
CONCLUSION
In conclusion, this study employed a unified analysis pipeline, SINGULAR, to compare the effects and mediators of various rejuvenation interventions. Key master regulators, including Arntl, AP-1 complex proteins, NFE2L2, and MAF, were identified as playing crucial roles in rejuvenation. The analysis revealed distinct differences between aging-related transcriptional changes and rejuvenation regulators. Immune and skin cell types were highlighted as potential intervention targets, with the possibility of additive or synergistic effects by targeting non-overlapping master regulators. Some limitations were noted, such as biases in cell type comparisons, reliance on ligand-receptor interactions for cell-cell communication analysis, and the risk of false negatives in differential expression testing. Despite these limitations, SINGULAR offers valuable insights into rejuvenation mechanisms and the identification of agents for anti-aging strategies. It provides a robust framework for understanding the mechanisms behind various interventions and offers a wide range of potential target genes for a comprehensive anti-aging approach.
Click here to read the full research paper in Aging.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
In this fascinating new review, researchers Polina A. Loseva and Vadim N. Gladyshev discuss “The beginning of becoming a human.”
—
For centuries, the question of when human life commences has perplexed philosophers, theologians, and scientists alike. With the advent of modern reproductive technologies and groundbreaking scientific advancements, this profound inquiry has taken on renewed urgency and complexity. In a fascinating new review paper, researchers Polina A. Loseva and Vadim N. Gladyshev from Harvard Medical School delved into this intricate subject, exploring the multifaceted perspectives that have shaped our understanding of life’s origins. On May 6, 2024, their review was published on the cover of Aging’s Volume 16, Issue 9, entitled, “The beginning of becoming a human.” Below, this article breaks down their chronological review of the various ways life has been defined: movement, fusion, self-sufficiency, uniqueness, and now, aging.
Life Defined by Movement: The Quickening
Historically, the notion of life’s inception was inextricably linked to the first perceptible movements of the fetus within the womb, a phenomenon known as “quickening.” In 18th-century England, this milestone was so pivotal that it could even pardon a pregnant woman sentenced to hanging. However, as our comprehension of embryonic development deepened, it became evident that quickening is an unreliable indicator, as the timing varies widely among individuals and is largely dependent on maternal factors.
Life Defined by Fusion: The Conception Conundrum
Another perspective posits that life begins at the moment of conception, when the egg and sperm fuse, forming a unique genetic entity distinct from its progenitors. However, this definition encounters challenges, as the newly formed zygote lacks a fully assembled nucleus and functional genome initially. Furthermore, the ability to split or combine embryos during the early stages raises philosophical quandaries about the individuality and uniqueness of life.
Life Defined by Self-Sufficiency: Viability and Technological Advancement
As medical technologies advanced, the definition of life’s beginning shifted towards the point at which the fetus could theoretically survive outside the womb, albeit with medical intervention. This threshold, known as “viability,” has been a moving target, continually redefined as neonatal care capabilities improve. However, with the advent of artificial womb systems, this criterion may become increasingly ambiguous.
In the midst of the heated debates surrounding reproductive technologies and embryonic experimentation in the 1980s, the Warnock Committee was tasked with establishing ethical boundaries. Their landmark report introduced the “14-day rule,” a compromise that prohibited the cultivation or experimentation on human embryos beyond 14 days after fertilization. While the rationale behind this specific timeframe was somewhat arbitrary, it struck a delicate balance between scientific progress and ethical considerations.
Life Defined by Uniqueness: The Gastrulation Milestone
Remarkably, the 14-day stage coincides with a pivotal developmental event known as gastrulation, during which the embryo transitions from a single-layered structure to a three-layered disc that prefigures the body plan of a vertebrate organism. This transformation not only establishes the embryo’s anterior-posterior, dorsal-ventral, and left-right axes but also marks the point at which the embryo becomes increasingly resistant to splitting or combining, solidifying its individuality.
As scientific capabilities advanced, the ability to culture human embryos beyond the 14-day threshold became a reality, reigniting discussions about revising the Warnock Committee’s guidelines. Proponents argued that this boundary was arbitrary and that our improved understanding of neural development warranted an extension. Others proposed alternative timeframes, such as 22 days (when the nervous system begins to form) or 28 days (when abortions are typically not performed). Ultimately, the International Society for Stem Cell Research (ISSCR) opted for a case-by-case approach, with individual oversight committees evaluating each experiment’s merits.
Life Defined by Aging: A Paradigm Shift
Intriguingly, recent studies have shed light on an overlooked aspect of embryonic development: the onset of aging. By employing epigenetic clocks and other molecular biomarkers, researchers have discovered that the “ground zero” point of aging coincides remarkably with the 14-day stage, marking the transition from a rejuvenated state to the commencement of the aging process. This finding not only reinforces the significance of this developmental milestone but also prompts a reconsideration of life’s beginnings from the perspective of aging trajectories.
The 14++ Conundrum: Navigating Ethical and Scientific Imperatives
As the debate surrounding the 14-day rule continues to evolve, a paradoxical situation has emerged: the scientific consensus on the beginning of life remains elusive, while the ethical boundaries are subject to ongoing reevaluation and case-by-case determinations. This dichotomy underscores the need for a broader discussion involving not only embryologists but also bioethicists, legal experts, and diverse societal stakeholders.
Rather than seeking a definitive answer to the question of when human life begins, a more holistic approach may be to consider the emergence of different levels of life organization during embryonic development. These levels could encompass the cellular, organismal, and human life levels, each with its own unique characteristics and potential boundaries. By recognizing the complexity and multidimensionality of this process, we may gain a deeper appreciation for the intricate tapestry that weaves together the beginnings of human existence.
Synthetic Embryos: Witnessing the Emergence of Life In Vitro
While the 14-day stage may not represent the ultimate boundary for human life, it emerges as a compelling candidate for the transition to organismal life. At this juncture, the embryo exhibits signs of self/non-self discrimination, with cells organized into layers that prefigure the body plan. Concurrently, the rejuvenation processes conclude, and the aging trajectory commences for the somatic cells. This confluence of events suggests that the 14-day stage marks the emergence of a living organism, even if it may not yet possess all the attributes of a human being.
Recent breakthroughs in the generation of synthetic embryos, or “embryoids,” from pluripotent stem cells have opened up unprecedented opportunities to witness the emergence of organismal life in vitro. By recapitulating the early stages of human development, including gastrulation and the formation of embryonic layers, these synthetic models offer a unique window into the intricate processes underlying the transition from a collection of cells to an organized, living entity.
The Path Forward: Embracing Complexity and Collaboration
As we continue to unravel the enigma of life’s beginnings, it is evident that a multidisciplinary approach is essential. Collaboration among embryologists, bioethicists, legal scholars, and diverse stakeholders will be crucial in navigating the ethical and scientific complexities that arise. By embracing the nuances and respecting the perspectives of various disciplines, we can collectively chart a course that harmonizes scientific progress with ethical considerations, ultimately deepening our understanding of the profound journey that culminates in the emergence of a human being.
Click here to read the full review paper published in Aging.
—
Aging is an open-access, traditional, peer-reviewed journal that publishes high-impact papers in all fields of aging research. All papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.
Click here to subscribe to Aging publication updates.
In this new study, researchers provide the first evidence of a pan-tissue decrease of stemness during human aging.
—
Aging is still shrouded in proverbial darkness. But, some researchers hypothesize that aging may be linked to stem cell exhaustion. Stemness, the ability of a cell to differentiate into various cell types, is an essential characteristic defining the functionality of stem cells. It has been observed that stem cells seem to diminish with age, although the precise role of stem cells in human aging remains to be elucidated.
“Among the biological pathways associated with aging, we can highlight stem cell exhaustion, which argues that during normal aging, the decrease in the number or activity of these cells contributes to physiological dysfunction in aged tissues [4].”
In this study, the researchers delve into the intricate relationship between aging and stemness, offering vital insights into this complex interplay. The researchers conducted an in-depth analysis of healthy human tissue samples, assigning “stemness scores” to track the stemness levels across different age groups.
“In this context, detecting stemness-associated expression signatures is a promising strategy for studying stem cell biology.”
This research is the first to provide evidence of a pan-tissue decline in stemness during human aging. It is an important step forward in understanding the cellular mechanisms involved in the aging process and their potential implications for human health.
Methodology & Data Sources
The researchers used the RNA-Seq-based gene expression data from human tissues, downloaded from the Genomics of Ageing and Rejuvenation Lab’s Genomics of Ageing (GTEx) portal. This comprehensive dataset included over 17,000 healthy human tissue samples, spanning an age range of 20 to 79 years.
A machine learning methodology, originally developed by Malta et al., was applied to the GTEx transcriptome data to assign stemness scores to all samples. This advanced machine learning model was trained on stem cell classes and their differentiated progenitors, enabling the researchers to detect stemness signatures from the transcriptome data of healthy human tissues.
Key Findings
The analysis revealed a significant negative correlation between the subject’s age and stemness score in approximately 60% of the studied tissues. Interestingly, the only exception was the uterus, which exhibited increased stemness with age. This finding is particularly noteworthy, as it provides the first evidence of a pan-tissue decline in stemness during human aging. It supports the hypothesis that stem cell deterioration may contribute to the aging process.
The researchers also observed interesting correlations between stemness and other cellular processes. They found that stemness was positively correlated with cell proliferation. However, this relationship was not universal, with some tissues showing exceptions.
In contrast, when they examined the association between stemness and cellular senescence, a negative correlation was observed across the board. This finding suggests that although senescent cells and stem cells are not technically opposite states, they behave in opposite ways at the transcriptomic level within a living organism.
Implications & Future Directions
The findings of this study have far-reaching implications for our understanding of the aging process and its cellular underpinnings. By providing the first evidence of a pan-tissue decline in stemness during human aging, the study adds significant weight to the notion that stem cell deterioration may contribute to human aging.
However, many questions remain. For instance, it is not yet clear whether the loss of stemness contributes to aging or is a consequence of it. Moreover, it is uncertain whether the decline in stemness is due to a direct reduction in the stem cell pool or refers to intrinsic changes in different cells within the tissue.
Further research is needed to address these questions, and more robust studies are required to draw more assertive conclusions. It is also crucial to determine which factors drive these changes and which patterns and genes are associated with this process. This will be pivotal in advancing our understanding of stemness aging and its potential implications for human health.
“In conclusion, we provide the first evidence of a pan-tissue decrease of stemness during human aging and report an association between stemness and cell proliferation and senescence. This study also assigned a stemness score to more than 17,000 human samples, and these data can be useful for the scientific community for further studies.”
Click here to read the full research paper published in Aging.
—
Aging is an open-access, traditional, peer-reviewed journal that publishes high-impact papers in all fields of aging research. All papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.
Click here to subscribe to Aging publication updates.