In an effort to mimic metformin and rapamycin, researchers used powerful screening methods to analyze over 800 natural compounds to assess their anti-aging potential and safety profile.
The Top-Performer series highlights papers published by Aging that have generated a high Altmetric attention score. Altmetric scores, located at the top-left of trending Aging papers, provide an at-a-glance indication of the volume and type of online attention the research has received.
Read Aging’s Top 100 Altmetric papers.
—
By 2030, one in five Americans will age over 65 years old in the United States. As a society, an even larger aging population is fast on our heels. With age comes wisdom, and unfortunately, so does a number of costly and devastating diseases, including cancer, cardiovascular disease, Alzheimer’s disease, and Type II diabetes.
Researchers are currently working to mitigate the upcoming burden for this expanding population by developing anti-aging and anti-cancer drugs, and other geroprotective interventions that could extend healthspan, lower disease rates, and maintain productivity. However, the slow and expensive process of gaining approval for new potential pharmaceutical and nutraceutical interventions is historically arduous and prone to failure—especially when it comes to anti-aging and longevity research.
“Even if successful, to be used preventatively, anti-aging drugs face extraordinarily high safety and efficacy standards for approval [9].”
In 2017, researchers from the United States’ Insilico Medicine, Inc. and Life Extension, the United Kingdom’s Biogerontology Research Foundation, Canada’s Queen’s University, and Russia’s Russian Academy of Sciences, worked together to test a strategy to accelerate the development of safe, wide-scale anti-aging nutraceuticals. Their study was published in Aging’s Volume 9, Issue 11, and entitled, “Towards natural mimetics of metformin and rapamycin.” To date, this top-performing research paper has generated an Altmetric Attention score of 127.
Metformin and Rapamycin
“One strategy to hasten the process has been the repurposing of existing, FDA-approved drugs that show off-label anti-cancer and anti-aging potential [10,11], and at the top of that list are metformin and rapamycin, two drugs that mimic caloric restriction [12].”
Metformin and rapamycin have already been FDA approved for use in renal transplants, Type II diabetes, and metabolic syndrome. These two drugs are both mTOR inhibitors which, through numerous research studies, have shown pleiotropic effects exhibiting multiple anti-aging, anticancer, and anti-cardiovascular disease benefits. However, some adverse side effects pertaining to extended use have made it so these two interventions (used alone) are unable to move forward for wide-scale preventative use.
“Taken together, rapamycin and metformin are promising candidates for life and healthspan extension; however, concerns of adverse side effects have hampered their widescale adoption for this purpose.”
Although there are some adverse side effects, the chemical structures of metformin and rapamycin should not be ignored. These two drugs can be analyzed, and even mimicked, to develop new, safer interventions to prevent and treat age-related diseases. The researchers in this study initiated an effort to identify nutraceuticals as safe, natural alternatives to metformin and rapamycin drugs.
“Nutraceuticals have received considerable attention in recent years for potential roles in preventing or treating a number of age-related diseases [88].”
The Study
“Our work is done entirely in silico and entails the use of metformin and rapamycin transcriptional and signaling pathway activation signatures to screen for matches amongst natural compounds.”
Test compounds were selected based on the natural compounds listed in the UNPD and Library of Integrated Network‐based Cellular Signatures (LINCS) datasets. Gene‐ and pathway‐level signatures of metformin and rapamycin were mapped and screened for matches against the over 800 natural compounds chosen. The team used conventional statistical methods, pathway scoring-based methods, and training of deep neural networks for signature recognition. Researchers applied several bioinformatic approaches and deep learning methods, including the Oncofinder, Geroscope, and in silico Pathway Activation Network Decomposition Analysis (iPANDA). The iPANDA extracts robust, biologically relevant pathway activation signatures from the data.
“In an application of these methods, we focused on mimicry of metformin and rapamycin, seeking nutraceuticals that could preserve their anti-aging and disease-preventive potential while being better suited for wide-scale prophylactic use.”
Results and Conclusion
“The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin.”
Their initial list of over 800 natural compounds was condensed to a shortlist of candidate nutraceuticals that showed similarity to metformin and rapamycin and had low adverse effects.
“This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.”
Click here to read the full research paper, published by Aging.
—
Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Aging-us.com. Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.
For media inquiries, please contact [email protected].