“The integration of artificial intelligence (AI), biomarkers, ageing biology, and longevity medicine stands as a cornerstone for extending human healthy lifespan.”
Imagine a future where we not only live longer but stay healthy throughout those extra years. Thanks to recent breakthroughs in biotechnology and artificial intelligence (AI) in healthcare, this vision is closer to becoming a reality.
Advancements in Aging Research
Aging research has made significant progress in recent years by combining disciplines like biology, technology, and medicine to tackle the challenges of extending healthspans and reducing age-related diseases. While people today live longer than ever before, extending our “healthspan”—the years we stay active and illness-free—remains challenging. AI and health biomarkers (biological indicators of our body’s condition) are now key tools in the pursuit of longer, healthier lives.
The work summarizes insights from the 2023 Aging Research and Drug Discovery Meeting. Researchers from renowned institutions explored how AI, biomarkers, and clinical applications can work together to enhance longevity. This fusion, termed “longevity biotechnology,” promises to transform healthcare from reactive treatments to proactive, preventive measures focused on staying healthy as we age.
The Challenge: Targeting Multiple Health Conditions with Longevity Biotechnology
Traditional aging research often targets single diseases, but most elderly individuals experience multiple chronic conditions. Addressing this complex challenge requires identifying biological markers that indicate aging and predicting health risks before diseases manifest.
The Breakthrough: AI in Biomarker Discovery for Aging
The study highlights how AI can accelerate the discovery of biomarkers, allowing scientists to understand aging at the cellular level. By using machine learning to identify unique patterns, researchers can estimate biological age, discover potential treatments, and evaluate the impact of lifestyle changes on health. This personalized approach enables healthcare providers to create prevention and treatment plans suited to each person’s unique health needs.
The Future of Healthcare: Preventive, AI-Driven Longevity Treatments
Currently, healthcare often focuses on managing diseases as they arise. However, these AI-driven tools could bring about a shift to preventive healthcare. Instead of waiting for age-related illnesses, clinicians could use AI insights to address aging’s root causes, improving health before issues arise.
While the promise of AI in healthcare is significant, the research team emphasizes that further investment is needed to make these AI-driven approaches accessible and accurate. With continued advancements, longevity biotechnology could become a standard part of healthcare, offering a new way to maintain vitality and well-being as we age.
Conclusion
Longevity biotechnology represents a groundbreaking shift, with AI and biomarkers helping us envision a future of healthier, longer lives. This approach brings us closer to understanding and managing the aging process, making extended healthspans a real possibility.
Click here to read the full research paper in Aging.
—
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging publication updates.
Crossref is a non-profit organization that logs and updates citations for scientific publications. Each month, Crossref identifies a list of the most popular Aging (Aging-US) papers based on the number of times a DOI is successfully resolved.
Authors: Yutaro Kubota, Qinghong Han, Jose Reynoso, Yusuke Aoki, Noriyuki Masaki, Koya Obara, Kazuyuki Hamada, Michael Bouvet, Takuya Tsunoda, and Robert M. Hoffman
Authors: Pedro S. Marra, Takehiko Yamanashi, Kaitlyn J. Crutchley, Nadia E. Wahba, Zoe-Ella M. Anderson, Manisha Modukuri, Gloria Chang, Tammy Tran, Masaaki Iwata, Hyunkeun Ryan Cho, and Gen Shinozaki
Authors: Jérôme Salignon, Omid R. Faridani, Tasso Miliotis, Georges E. Janssens, Ping Chen, Bader Zarrouki, Rickard Sandberg, Pia Davidsson, and Christian G. Riedel
Quote: “[…] we see our work as an indication that combining different molecular data types could be a general strategy to improve future aging clocks.”
Quote: “[…] these data suggest that a methylation-supportive diet and lifestyle intervention may favorably influence biological age in both sexes during middle age and older.”
Authors: Brian H. Chen, Cara L. Carty, Masayuki Kimura, Jeremy D. Kark, Wei Chen, Shengxu Li, Tao Zhang, Charles Kooperberg, Daniel Levy, Themistocles Assimes, Devin Absher, Steve Horvath, Alexander P. Reiner, and Abraham Aviv
Quote: “The two key observations of this study are: (a) LTL is inversely correlated with EEAA; and (b) the LTL-EEAA correlation largely reflects the proportions of imputed naïve and memory CD8+ T cell populations in the leukocytes from which DNA was extracted.”
Authors: Ake T. Lu, Austin Quach, James G. Wilson, Alex P. Reiner, Abraham Aviv, Kenneth Raj, Lifang Hou, Andrea A. Baccarelli, Yun Li, James D. Stewart, Eric A. Whitsel, Themistocles L. Assimes, Luigi Ferrucci, and Steve Horvath
Quote: “We coin this DNAm-based biomarker of mortality “DNAm GrimAge” because high values are grim news, with regards to mortality/morbidity risk. Our comprehensive studies demonstrate that DNAm GrimAge stands out when it comes to associations with age-related conditions, clinical biomarkers, and computed tomography data.”
Quote: “Here we present the current state of development of the deep aging clocks in the context of the pharmaceutical research and development and clinical applications.”
Authors: Morgan E. Levine, Ake T. Lu, Austin Quach, Brian H. Chen, Themistocles L. Assimes, Stefania Bandinelli, Lifang Hou, Andrea A. Baccarelli, James D. Stewart, Yun Li, Eric A. Whitsel, James G Wilson, Alex P Reiner, Abraham Aviv, Kurt Lohman, Yongmei Liu, Luigi Ferrucci, and Steve Horvath
Quote: “Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging.”
Authors: Jae-Hyun Yang, Christopher A. Petty, Thomas Dixon-McDougall, Maria Vina Lopez, Alexander Tyshkovskiy, Sun Maybury-Lewis, Xiao Tian, Nabilah Ibrahim, Zhili Chen, Patrick T. Griffin, Matthew Arnold, Jien Li, Oswaldo A. Martinez, Alexander Behn, Ryan Rogers-Hammond, Suzanne Angeli, Vadim N. Gladyshev, and David A. Sinclair
Quote: “We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age. Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.”
—
Click here to read the latest papers published by Aging.
—
Aging is an open-access, traditional, peer-reviewed journal that has published high-impact papers in all fields of aging research since 2009. All papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.
Click here to subscribe to Aging publication updates.
In a new editorial, researchers discuss interconnected mechanisms of neuronal functionality and available tools to investigate neuronal aging and longevity.
—
Neurons, the building blocks of the nervous system, play a vital role in our body’s function and longevity. Unlike other cells, neurons do not undergo replicative aging. However, they are still susceptible to various sources of damage throughout life, leading to neuronal death. Understanding the mechanisms behind aging and neuronal death is crucial for uncovering the secrets of brain longevity and developing potential interventions to promote healthy aging.
Neurons, born during embryonic development, must function in the body for the entire lifespan of the organism. They are incredibly durable cells, but they are not immune to damage. Neurons require a significant amount of oxygen and glucose to carry out their activities, making them vulnerable to ischemia. Ischemia occurs when the blood supply to a particular tissue is restricted, leading to oxygen and nutrient deprivation.
Neurons can accumulate damage over time, which may result in cell death linked to reactive oxygen species (ROS). Neurons may also die due to ion overload and swelling caused by the malfunction of voltage-gated ion channels on their membranes. High concentrations of neurotransmitters and the accumulation of misfolded proteins are also implicated in neuronal death, observed in various neurodegenerative diseases.
To gain insights into the factors that promote neuron differentiation and maintenance, researchers have developed innovative screening methods. For example, Cui and colleagues described a high-throughput screening method using a luciferase reporter construct inserted downstream of the endogenous tyrosine hydroxylase (TH) gene. They differentiated neurons from human pluripotent stem cells and monitored their activity over time. This approach allows for the modeling of cell survival and demise, providing valuable information about the factors that influence neuronal longevity.
The Role of ROS in Survival & Death
Reactive oxygen species (ROS) are molecules produced during normal cellular metabolism. They play a crucial role in various biological processes but can also lead to oxidative stress when their levels exceed normal functional levels. Recent research has shed light on the distinction between global and local ROS balances and imbalances in cell phenotyping and mitochondrial energy management.
While global ROS homeostasis is essential for overall cellular health, ROS signaling pathways are driven locally by cellular microdomain-specific ROS production and degradation. Neurons have developed mechanisms to control ROS production and combat oxidative stress. For example, they express neurotrophic proteins that enhance mitochondrial activity, promoting the overall health of neurons.
“A sustained disruption of ROS balance can result in desirable enhanced cell signaling or undesirable oxidative stress, which can either improve function or diminish performance, respectively.”
Mechanisms for Longevity
Neurons have evolutionarily developed intricate mechanisms to maintain their longevity. They possess a distinct transcriptome signature that represses genes related to neural excitation and synaptic function. By preventing neurons from experiencing ion overload, this mechanism contributes to their long-term survival.
These brain cells have also developed specific DNA repair mechanisms to correct errors induced by active transcription. Neurons can turn off pro-apoptotic genes through alternative splicing, avoiding apoptosis and promoting long-term survival. These interconnected mechanisms work together to reduce the accumulation of aging-related damage in neurons. Understanding the fundamental mechanisms that enable the longevity of neurons is crucial for developing interventions that promote healthy brain aging. Researchers can use novel tools, including cell-based models, imaging techniques and animal studies, to investigate these mechanisms.
Conclusions
Neurons, although durable cells, are susceptible to various forms of damage that can lead to their demise. By studying the interplay between ROS, neuronal excitation, DNA repair, and apoptosis, researchers aim to uncover the secrets of brain longevity and develop strategies to mitigate the effects of aging on neurons. By understanding these mechanisms, researchers aim to develop interventions that promote healthy brain aging and enhance our overall understanding of brain health.
“Together, these findings suggest that neurons have evolved a set of intrinsically interconnected mechanisms to reduce long-term accumulations of aging-related damages. Disruption in these mechanisms may tip the neuron homeostasis off-balance and drive the neurons into the path of degeneration. We have a plethora of tools to probe the fundamental mechanisms with hopes of translation to clinical applications.”
Click here to read the full editorial published in Aging.
—
Aging is an open-access, traditional, peer-reviewed journal that has published high-impact papers in all fields of aging research since 2009. All papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.
Click here to subscribe to Aging publication updates.
The world’s leading Rapamycin researcher, Dr. Mikhail Blagosklonny, has a long background in cancer research and one important discovery he made around 2000 was that Rapamycin slowed down senescent cancer cells in different ways. After that step-by-step, his interest in the longevity field increased and he developed the very interesting hyperfunction theory of aging.
He has made a huge contribution in moving the Rapamycin longevity field forward and his research papers have impacted many people. For example, the Rapamycin physician Alan Green who – thanks to these papers – took the decision in 2017 to start prescribing Rapamycin off label. Today, Alan Green has the biggest clinical experience in the area with more than 1,200 patients. A lot of other physicians have after that also taken these steps and one of those, for example, is physician Peter Attia.
The podcast is for general information and educational purposes only and is not medical advice for you or others. The use of information and materials linked to the podcast is at the users own risk. Always consult your physician with anything you do regarding your health or medical condition.
Researchers investigated the relationship between familial longevity, chronological age and heart rate parameters, including heart rate variability and 24-h rhythms.
The Trending With Impact series highlights Aging publications (listed as “Aging (Albany NY)” by Medline/PubMed and “Aging-US” by Web of Science) that attract higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Aging-US.com.
—
A normal resting heart rate (HR) for adults should be anywhere between 60 and 100 beats per minute. A low resting heart rate has been associated with better overall health and fitness. Crosswise, a higher resting heart rate appears to have a strong correlation with mortality. Heart rate variability (HRV), the beat-to-beat changes in heart rate, is indicative of the heart’s ability to respond to changes in physical and emotional stress. Low HRV has been shown to be a risk factor for heart disease, while high HRV has been associated with good heart health. Although HR and HRV are frequently studied, these parameters are not often investigated continuously or over long periods of time in healthy, middle-aged individuals.
“Parameters of HR and HRV are often investigated during a short electrocardiogram (ECG) measurement at the study center or in the hospital, but not continuously over a longer period while individuals continue with their daily lives.”
“This is one of the first studies to look at the relationship between parameters of HR, HRV, and 24-h rhythms in HR based on continuous ambulatory ECG measurements over a period of several days with both familial longevity and chronological age in a single design.”
The majority of the recruited study participants were middle-aged and from the Leiden Longevity Study (LLS): 37 offspring of long-lived families between 52 and 83 years old, and 36 of their partners/spouses of the same age range. In addition, the researchers recruited 35 younger individuals from the Switchbox Leiden Study between 18 and 40 years old. All study participants were asked to wear a small heart rate monitor, the Equivital EQ02 life monitor (EQ02), for 24 to 90 hours. They were then instructed to carry on with their daily lives and regular routines.
Results & Conclusion
After data cleaning and statistical analyses, no association between heart rate parameters and familial longevity was found. However, middle-aged participants had lower 24-hour heart rates (average and maximum HR, not minimum HR), lower amplitudes, and earlier trough and peak times than the young participants. During long-term EQ02 recordings, middle-aged participants showed a less optimal HRV in both the sleep and awake periods. The researchers believe this might indicate that older hearts are less adaptable than those in the young.
“This could be a first indication of deteriorated cardiovascular health in middle-aged individuals.”
The researchers were forthcoming about the limitations of this study. The study sample was relatively small, there was no standardization of daily activities among the participants, and any potential medications used by the younger participants were not adjusted for (as they were for the middle-aged participants). Despite these limitations, this study provides novel insight into heart rate parameters over longer periods of time and in relation to familial longevity and chronological age.
“In our study, we can conclude that resting HR during the sleep period is not associated with familial longevity or chronological age. This study showed that continuous ambulatory ECG measurements can be used to obtain adequate information on HR, HRV and 24-h rhythms in HR, which was also showed by others [50]. However, the small sample size, due to the poor quality of a part of the data, is a limitation of this study and should be improved in future studies. Furthermore, we suggest for future research to control for exercise and day planning between groups. Lastly we suggest to include an additional group with participants of an older age than the middle-aged group, and to investigate the relation between health status and HR parameters.”
Click here to read the full research paper published by Aging.
Aging is an open-access journal that publishes research papers bi-monthly in all fields of aging research. These papers are available at no cost to readers on Aging-us.com. Open-access journals have the power to benefit humanity from the inside out by rapidly disseminating information that may be freely shared with researchers, colleagues, family, and friends around the world.
Quote: “Blocking iron absorption through drugs or natural products extends lifespan. Many life-extending interventions, such as rapamycin, calorie restriction, and old plasma dilution can be explained by the effects they have on iron absorption, excretion, and metabolism.”
Quote: “This report describes a novel, comprehensive, and personalized therapeutic program that is based on the underlying pathogenesis of Alzheimer’s disease, and which involves multiple modalities designed to achieve metabolic enhancement for neurodegeneration (MEND).”
Quote: “The incidence of severe manifestations of COVID-19 increases with age with older patients showing the highest mortality, suggesting that molecular pathways underlying aging contribute to the severity of COVID-19. One mechanism of aging is the progressive shortening of telomeres, which are protective structures at chromosome ends.”
Quote: “Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis.”
Quote: “Cannabis sativa has been proposed to modulate gene expression and inflammation and is under investigation for several potential therapeutic applications against autoinflammatory diseases and cancer. Here, we hypothesized that the extracts of novel C. sativa cultivars may be used to downregulate the expression of pro-inflammatory cytokines and pathways involved in inflammation and fibrosis.”
Quote: “Sleep disturbance and deficiency are common among older adults and have been linked with dementia and all-cause mortality. Using nationally representative data, we examine the relationship between sleep disturbance and deficiency and their risk for incident dementia and all-cause mortality among older adults.”
Quote: “Instead, aging biomarkers, such as DNA methylation (DNAm) clocks, have been developed to monitor biological age. Herein we report a retrospective analysis of DNA methylation age in 42 individuals taking Rejuvant®, an alpha-ketoglutarate based formulation, for an average period of 7 months.”
Authors: Priscila Chiavellini, Martina Canatelli-Mallat, Marianne Lehmann, Maria D. Gallardo, Claudia B. Herenu, Jose L. Cordeiro, James Clement, and Rodolfo G. Goya
Quote: “The view of aging has evolved in parallel with the advances in biomedical sciences. Long considered as an irreversible process where interventions were only aimed at slowing down its progression, breakthrough discoveries like animal cloning and cell reprogramming have deeply changed our understanding of postnatal development, giving rise to the emerging view that the epigenome is the driver of aging.”
Authors: Kara N. Fitzgerald, Romilly Hodges, Douglas Hanes, Emily Stack, David Cheishvili, Moshe Szyf, Janine Henkel, Melissa W. Twedt, Despina Giannopoulou, Josette Herdell, Sally Logan, and Ryan Bradley
Quote: “Manipulations to slow biological aging and extend healthspan are of interest given the societal and healthcare costs of our aging population. Herein we report on a randomized controlled clinical trial conducted among 43 healthy adult males between the ages of 50-72.”
Quote: “At the cellular level, two key hallmarks of the aging process include telomere length (TL) shortening and cellular senescence. Repeated intermittent hyperoxic exposures, using certain hyperbaric oxygen therapy (HBOT) protocols, can induce regenerative effects which normally occur during hypoxia. The aim of the current study was to evaluate whether HBOT affects TL and senescent cell concentrations in a normal, non-pathological, aging adult population.”
Click here to read the latest papers published by Aging.
Aging (Aging-US) is an open-access journal that publishes research papers bi-monthly in all fields of aging research. These papers are available to read at no cost to readers on Aging-us.com. Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.
Following theSecond Interventions in Aging Conference, meeting organizers Dr. Brian Kennedy and Dr. Linda Partridge discuss their overview of the meeting proceedings that was published by Aging in 2017, entitled, “2nd interventions in aging conference.”
Behind the Study is a series of transcribed videos from researchers elaborating on their recent oncology-focused studies published by Aging. Visit the AgingYouTube channel for more insights from outstanding authors.
—
Dr. Brian Kennedy
I’m Brian Kennedy, I’m a professor at the Buck Institute for Research on Aging and a visiting professor at National University of Singapore.
Dr. Linda Partridge
And I’m Linda Partridge and I’m Director at the Max Planck Institute for Biology of Aging in Cologne, Germany. And also Director of the Institute for Healthy Aging at University College London.
So, Brian, how did you get into aging research?
Dr. Brian Kennedy
The funny thing was when I went to graduate school, I’d worked in yeast as an undergraduate, and I decided that I was not going to work in yeast anymore. But the more I realized about how difficult it was to work in mice, the more I wanted to work in yeast. And so there was another graduate student and I that wanted to go to Lenny Guarente‘s lab, and we decided to work in yeast and we wanted to figure out something completely crazy to do.
And we came up with two ideas: One was yeast apoptosis, which was a little weird for a single-celled organism and the other was aging. And we decided that aging was the least-
Dr. Linda Partridge
Mr. Nobel Prize.
Dr. Brian Kennedy
It’s true. We decided that aging was the least implausible of the two. And so we did that, but there’s a whole field on yeast apoptosis now too, so I guess we would have been okay. How about you?
Dr. Linda Partridge
Well, I got into it crabwise, really, because I started out life as an evolutionary biologist. So from the evolution point of view, it’s a completely weird trait because development produces a wonderfully functioning young organism and then it all goes to hell. You’d think it would be a lot easier to maintain it and to produce it in the first place. So I became very interested in how aging evolves and it is indeed really peculiar it’s almost certainly given what we’ve learned recently about the mechanisms of aging, actually bad effects in old age of genes that are good in the young. So I think that’s pretty interesting if you think about it as genes driving the old organism too hard to do the kinds of things that young organisms can do very well. I think it makes quite an easier process to think about, put it that way.
Dr. Brian Kennedy
And what we started the puzzle, both of us have worked on this a lot is, you know we’ve been trying to show that the pathways that are modulating aging are conserved. And it’s always kind of a puzzle that there’s so much conservation if this is a trait that evolution never really cared about that much. So it’s… I’ve never quite got that satisfied in my mind. What do you think about that?
Dr. Linda Partridge
I guess what I think is that the processes that you and other people have come up with, there are ones that do drive good things in young organisms. So the things that make for growth, for reproduction, for strong immune responses, for effective muscles and movement, all the things that young organisms have to do. But they seem to be set at too higher level when you get old, and I think that way it is actually quite easy to understand why it’s evolutionarily conserved because presumably the kinds of genes that control growth and reproduction evolve very early on.
Dr. Brian Kennedy
I agree. I actually argue with people that aging is going to be easier to modify than disease. So I think it’s going to be easier to keep people healthy than it is to wait until they get sick and try to treat them and make them better. I think of it as very simplistically as a state of homeostasis versus disequilibrium, you know, while you’re still relatively healthy, it’s fairly easy to tap into these pathways … relatively easy to tap into these pathways … and try to maintain that. But once you get into a state of disequilibrium, which I would call chronic disease of one sort or another, then you’ve got a problem. You’re kind of fighting entropy at that point and trying to put things back together again is very difficult.
Dr. Linda Partridge
Yes, it’s very interesting talking to colleagues in other areas about that idea because one gets a kind of ‘yuck’ response. So does that mean that humans are going to have to take pills when they’re healthy to prevent disease? You can point out that people do that already around statin and aspirin and things that lower high blood pressure. None of these are dealing with disease states, they’re in anticipation of possible disease states and trying to prevent them. So there’s plenty of taking pills to prevent things already, but for some reason, when you talk about it as a likely outcome of research into aging, there’s quite often a kickback, even from other scientists.
Dr. Brian Kennedy
I think most of the things we take, you know that are really working effectively really are aging drugs as much as they’re disease drugs. So you mentioned aspirin, but not just that I mean, look at statins, look at beta- blockers, look at early diabetes drugs like Metformin. All of them are targeting early risk factors for chronic disease, and I kind of feel like these risk factors are right at the interface between aging and disease itself.
Dr. Linda Partridge
They’re right on the nexus of the way in which aging acts as a risk factor for disease, and I think the other thing about them is that it’s quite clear that they’re turning out to have off-licence effects. Most of these drugs have a much broader therapeutic range than they’re generally used for. Which is exactly what you’d expect if they’re in there in that nexus between aging and disease.
Dr. Brian Kennedy
So what’s exciting to you now in your research? Where are you going in the next five years?
Dr. Linda Partridge
Well, funnily enough, I’m very much into drugs. So we’ve been doing quite a lot of drug work with drosophila and based exactly on this idea that mechanisms of aging are conserved. We’re starting to take a number of these drugs into mice, but also starting to do some big database stuff with humans, looking at particular pathways that have come up in the model organisms and asking whether SNPs associated with those pathways in humans ones that are either likely to increase the activity of the pathways concerned or decrease it or associated with particular types of disease risk.
So one can do this process called Mendelian randomization, which in theory gets rid of a lot of the effects of genetic background and focuses on a particular SNP. Now I think there’s enough data coming in on humans that we can really start to do the population genetics on these pathways, and I’m terribly excited by that.
What about you?
Dr. Brian Kennedy
Well, I have two goals right now. One is to try to go back to the simple organisms and really take a systems approach and try to take a yeast cell for example, and be able to describe all the features of aging, not just one gene at a time. And so we’re working a lot in sort of systems biology approaches there, but I think the main goal I have is-
Dr. Linda Partridge
Do you mean you’re looking at gene combinations or how are you doing it?
Dr. Brian Kennedy
Yes. Gene combinations, but also working with collaborators to look at how signaling pathways change with age to start to really understand longitudinal processes in a yeast cell. So the idea is to combine that with the genetic data and try to put the puzzle together.
Dr. Linda Partridge
I think that’s interesting.
Dr. Brian Kennedy
My main goal really is to get human and to start testing interventions in humans because I think we have enough knowledge now that we have things that are likely to work and we have reasonable candidate biomarkers, none of which are completely validated, but I feel good about some of them. And if you put that together, I kind of see it as a lock and key fit. You know we’ve got a bunch of interventions which are potential keys, and we’ve got a bunch of biomarkers which are potential locks, and we have to figure out which keys fit in which locks. So I’m looking at strategies to really test that in humans, either through academic research or through private companies.
Dr. Linda Partridge
So do you think companies are going to be interested in doing the kind of research that would target more than one disease, or do you think the way in is going to be to go for particular disease states? How do you think we should do it, operationally?
Dr. Brian Kennedy
I’d much rather target healthy aging or health span or prevention of multiple diseases. And I think there are companies that are thinking about that now, but they’re still relatively small generally. I think PhRMA kind of walks up to that ledge and looks over and then backs up. But eventually I think that it’s going to happen. I think what we need is some evidence that we can really modulates aging pathways. And that’s where this biomarker strategy or the kinds of things that [inaudible] is doing to get multiple disease parameters simultaneously in clinical trials. Those kinds of things, I think, are you just need a couple of success stories and then people start to get it. So I’m agnostic as to whether it’s done academically or privately, I just want to make it happen and so you know.
Dr. Linda Partridge
So what do you think about… We know so much from the animal studies about rapamycin now we probably know more about that than any other drug in the context of aging. Do you think there are going to be more clinical trials with rapamycin for off-license applications? Do you think it would be a trial for Alzheimer’s for instance?
Dr. Brian Kennedy
You know, there’ve been a lot of talk about trials for Alzheimer’s and I don’t think one has gotten started yet. But I think you’re going to start to see more and more of this. Then of course, there’s a lot of research to try to figure out how to either dose rapamycin or everolimus, which is the first generation of that rapalog in a way that doesn’t have the toxicity or to develop new drugs that have the efficacy without the toxicity. So I think both of those approaches are moving forward.
Novartis just spun off a small company to try to do this, and so I think that there’s renewed interest in trying to inhibit mTOR, but there’s still a lot of open questions about how it’s going to be best to do that. But having said that the number of potential indications, I mean, not to mention aging itself is so large that there’s clearly value into doing this successfully. So I’m pretty excited about where that’s going to go. I think that’s only one of a bunch of pathways though and you’re looking for new drugs and new pathways, and I think we’re going to find that there are a lot of different potential entry points for intervention in aging as we go forward.
Dr. Linda Partridge
I think it’s a time of great excitement. I just hope that some of the human trials get done while I’m still active. I’d love to see some successes with people.
Dr. Brian Kennedy
But you will be active for at least 20 more years, so …
Dr. Linda Partridge
Lots longer if somebody comes up with a pill.
Dr. Brian Kennedy
You know, that’s why I think doing this Fusion Conference has been so fun. You know, we’ve done two of these now in Cancun, and the idea is to bring different groups of people to look at different strategies for interventions in aging. I think that the conferences are relatively small, but we try to recruit a wide range of people. So we get people discussing different kinds of ideas that don’t normally talk. That’s what I think the strength of it is what do you think?
Dr. Linda Partridge
I agree with that. I really like the format of those conferences because they have a low upper limit on the number of delegates deliberately. So that most people can give talks or posters and there’s plenty of time for discussion. And what I noticed at those meetings correspondingly is that the discussion is very intense. Almost everybody talks to everybody else at some point during the meeting. So there’s real interchange of ideas as you say, between people who we deliberately invite from different areas, and I think it’s been a great success and it’s also been very nice to see it going more and more translational. There is more and more interest in mechanisms that are going to give rise to preventative measures rather than just the basic research, which has been fantastic and was necessary to get anywhere. But people really are trying to push it into helping people now. And I find that very exciting. So yes, I think meetings are great.
Dr. Brian Kennedy
Yes, I know, and I think as we go forward with these meetings, we’ll probably continue to try to emphasize these human intervention studies as much as possible.
Dr. Linda Partridge
I think that’s very much a specialty of that meeting.
Dr. Brian Kennedy
Because there are other meetings that really focus on the basic biology of aging, but this is really trying to get at the next step.
Dr. Linda Partridge
Yeah. Yeah. It’s particularly good when we can get basic scientists and clinicians together, I think. And also people from the various companies who might do something about the discoveries. I think it’s a very good mix of people that way.
Dr. Brian Kennedy
I can’t, you know, in my better moments, I think that we’re almost right at a tipping point where we’re going to push over this wall and then all of a sudden everybody’s going to be saying, oh, targeting aging is common sense in 10 years. I still have the bad moments where I feel like the little soldier walking into the wall and never go anywhere too.
Dr. Linda Partridge
Yes. I fluctuate between those two points as well, but I find myself feeling optimistic more and more often seeing what’s happening.
Dr. Brian Kennedy
That’s good. Well, it’ll be exciting to see where the field goes moving forward…
Dr. Linda Partridge
Yeah, indeed. Indeed.
Click here to read the full meeting report, published by Aging.
Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Aging-us.com. Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.
Researchers surveyed available literature related to exercise and its association with longevity and aging. This extensive review expands on exercise as a lifestyle intervention and its ability to counteract cellular and tissue aging.
The Trending with Impact series highlights Aging publications that attract higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Aging-US.com.
—
Regular physical exercise provides benefits for both the body and mind, but how exactly does this healthy habit benefit our cells, signaling pathways, organs, and even bones? Furthermore, how can we employ regular exercise as part of an anti-aging strategy to extend our healthspan and lifespan?
Two researchers from the Beta Cell Aging Lab at Harvard Medical School authored a recent review paper which breaks down the currently available research on this very topic, with a special focus on pancreatic beta-cells and Type 2 diabetes. The authors detailed the recorded effects of exercise at systemic and cellular levels, its effects on each of the hallmarks of aging, and a potential molecular regulatory node that may integrate those effects. This review was published in May of 2021 by Aging, and entitled: “Effects of exercise on cellular and tissue aging.”
THE NINE HALLMARKS OF AGING
With age, cellular functions and systems in the human body progressively decline and destabilize, which eventually leads to disease and all-cause mortality. There are nine hallmarks of aging, which are classified as either primary, secondary, or integrative: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication.
“Exercise is a promising lifestyle intervention that has shown antiaging effects by extending lifespan and healthspan through decreasing the nine hallmarks of aging and age-associated inflammation.”
The researchers in this review explain that exercise is capable of counteracting each of these hallmarks of aging at systematic and cellular levels. They used publicly available research to cite and discuss the effects of exercise in each hallmark of aging in clear and thorough detail. The purpose of this article is to summarize this review, though readers are highly encouraged to read the full paper for deeper insights.
“The literature was surveyed on MEDLINE through freely accessible PubMed as a search engine for the terms: ‘exercise’, ‘longevity’ and ‘aging’; the most relevant studies were included as they related to the 9 hallmarks of aging.”
AMPK AS A CENTRAL REGULATOR
“In summary, exercise attenuates all hallmarks of aging through different molecular pathways and effectors that seem independent and disconnected.”
Given that exercise regulates each of these hallmarks individually, the researchers hypothesize that there must exist some kind of molecular regulatory node(s) capable of coordinating these responses. They propose that the 5’ adenosine monophosphate-activated protein kinase (AMPK) enzyme/protein could play this role.
“In summary, AMPK activation through exercise can impact all the hallmarks of aging through different signaling pathways as summarized in Figure 2 and can act as a signaling node capable of orchestrating many of the effects of exercise on the health span of different tissues and organs.”
EXERCISE AND TYPE 2 DIABETES
The researchers also discuss the effects of exercise on Type 2 diabetes mellitus (T2D).
“In summary, exercise activates molecular signals that can bypass defects in insulin signaling in skeletal muscle and increase skeletal muscle mitochondria, which are associated with improved insulin sensitivity in skeletal muscle and therefore improve aging-associated effects of T2D.”
CONCLUSION
“We propose that future studies should address the effects of exercise on tissues which are not considered its direct targets but do show accelerated aging in T2D, such as pancreatic β-cells. In these, the role of AMPK and its physiological control will become especially significant as exercise is considered a cellular antiaging strategy.”
Click here to read the full review, published by Aging.
—
Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Aging-us.com. Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.
In an effort to mimic metformin and rapamycin, researchers used powerful screening methods to analyze over 800 natural compounds to assess their anti-aging potential and safety profile.
The Top-Performer series highlights papers published by Aging that have generated a high Altmetric attention score. Altmetric scores, located at the top-left of trending Aging papers, provide an at-a-glance indication of the volume and type of online attention the research has received.
By 2030, one in five Americans will age over 65 years old in the United States. As a society, an even larger aging population is fast on our heels. With age comes wisdom, and unfortunately, so does a number of costly and devastating diseases, including cancer, cardiovascular disease, Alzheimer’s disease, and Type II diabetes.
Researchers are currently working to mitigate the upcoming burden for this expanding population by developing anti-aging and anti-cancer drugs, and other geroprotective interventions that could extend healthspan, lower disease rates, and maintain productivity. However, the slow and expensive process of gaining approval for new potential pharmaceutical and nutraceutical interventions is historically arduous and prone to failure—especially when it comes to anti-aging and longevity research.
“Even if successful, to be used preventatively, anti-aging drugs face extraordinarily high safety and efficacy standards for approval [9].”
“One strategy to hasten the process has been the repurposing of existing, FDA-approved drugs that show off-label anti-cancer and anti-aging potential [10,11], and at the top of that list are metformin and rapamycin, two drugs that mimic caloric restriction [12].”
Metformin and rapamycin have already been FDA approved for use in renal transplants, Type II diabetes, and metabolic syndrome. These two drugs are both mTOR inhibitors which, through numerous research studies, have shown pleiotropic effects exhibiting multiple anti-aging, anticancer, and anti-cardiovascular disease benefits. However, some adverse side effects pertaining to extended use have made it so these two interventions (used alone) are unable to move forward for wide-scale preventative use.
“Taken together, rapamycin and metformin are promising candidates for life and healthspan extension; however, concerns of adverse side effects have hampered their widescale adoption for this purpose.”
Although there are some adverse side effects, the chemical structures of metformin and rapamycin should not be ignored. These two drugs can be analyzed, and even mimicked, to develop new, safer interventions to prevent and treat age-related diseases. The researchers in this study initiated an effort to identify nutraceuticals as safe, natural alternatives to metformin and rapamycin drugs.
“Nutraceuticals have received considerable attention in recent years for potential roles in preventing or treating a number of age-related diseases [88].”
The Study
“Our work is done entirely in silico and entails the use of metformin and rapamycin transcriptional and signaling pathway activation signatures to screen for matches amongst natural compounds.”
Test compounds were selected based on the natural compounds listed in the UNPD and Library of Integrated Network‐based Cellular Signatures (LINCS) datasets. Gene‐ and pathway‐level signatures of metformin and rapamycin were mapped and screened for matches against the over 800 natural compounds chosen. The team used conventional statistical methods, pathway scoring-based methods, and training of deep neural networks for signature recognition. Researchers applied several bioinformatic approaches and deep learning methods, including the Oncofinder, Geroscope, and in silicoPathway Activation Network Decomposition Analysis (iPANDA). The iPANDA extracts robust, biologically relevant pathway activation signatures from the data.
“In an application of these methods, we focused on mimicry of metformin and rapamycin, seeking nutraceuticals that could preserve their anti-aging and disease-preventive potential while being better suited for wide-scale prophylactic use.”
Results and Conclusion
“The analysis revealed many novel candidate metformin and rapamycin mimetics, including allantoin and ginsenoside (metformin), epigallocatechin gallate and isoliquiritigenin (rapamycin), and withaferin A (both). Four relatively unexplored compounds also scored well with rapamycin.”
Their initial list of over 800 natural compounds was condensed to a shortlist of candidate nutraceuticals that showed similarity to metformin and rapamycin and had low adverse effects.
“This work revealed promising candidates for future experimental validation while demonstrating the applications of powerful screening methods for this and similar endeavors.”
Click here to read the full research paper, published by Aging.
—
Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Aging-us.com. Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.