Aging’s Commitment to Advancing Research: Sponsoring the “Future of Aging Research Mixer 2024”

Future of Aging Research Mixer
Future of Aging Research Mixer

Aging (Aging-US) was a proud sponsor of the “Future of Aging Research Mixer 2024” hosted by the Aging Initiative at Harvard University on November 15 in Boston. This event united a vibrant community of students, researchers and technologists, all driven by a shared mission: advancing innovations in aging research and longevity science.

Key Highlights from the Future of Aging Research Mixer 2024

The event kicked off with inspiring opening remarks and a keynote by George Church, professor at Harvard Medical School, founding member of the Wyss Institute, and co-founder of over 50 biotech companies. He was joined by Kat Kajderowicz, an MIT PhD student and Principal at age1. Together, they highlighted the interdisciplinary nature of aging research and its immense potential to drive transformative advancements.

Jesse Poganik, HMS Instructor in Medicine and Executive Co-Director of the Biomarkers of Aging Consortium, discussed the evolution of aging science and the critical role biomarkers play in understanding aging processes and assessing the effectiveness of interventions aimed at slowing or reversing age-related changes.

Alex Colville, co-founder and general partner at age1, explained how venture capital can accelerate innovation in longevity biotechnology. He shared career advice for aspiring researchers and paid tribute to his mentor, Dr. David Sinclair, a pioneer in aging research.

These talks highlighted the importance of mentorship, interdisciplinary collaboration, and investment in driving progress in the aging research field.

Empowering Future Aging Science Leaders

A majority of the attendees were students from Boston-area universities including Harvard, MIT, UMass and BU. These future scientists, entrepreneurs, and innovators engaged in meaningful discussions about research, career paths, and publishing in academic journals. Many expressed interest in journals like Aging (Aging-US) and sought advice on how to publish their work.

The “Future of Aging Research Mixer 2024” showcased the passion, collaboration, and innovation within the aging research community. Through its sponsorship, Aging (Aging-US) reaffirmed its commitment to fostering a vibrant network of talent and supporting the voices of young, passionate researchers. Initiatives like this inspire the next generation of scientists and entrepreneurs, driving sustained growth and transformative impact in the field.

Beyond the event, the Aging Initiative at Harvard University strengthens the community through ongoing programs like journal clubs, guest lectures, and informal lunches with professors. These initiatives encourage skill-building, idea-sharing, and mentorship, preparing students for impactful careers in aging science.

Why We Support Aging Research

Aging (Aging-US) was founded in 2008 by visionary scientists—the late Dr. Mikhail (Misha) Blagosklonny, the late Dr. Judith Campisi, and Dr. David Sinclair—with a clear mission: to create a journal by scientists, for scientists, so the researchers can publish their ideas, theories (sometimes unconventional) and studies on the rapidly developing aging field. Since then, we have remained dedicated to advancing the understanding of aging and age-related diseases, including cancer, a leading health challenge in today’s aging world.

Supporting initiatives like the Aging Initiative at Harvard University and events such as the “Future of Aging Research Mixer 2024” is central to our mission. By supporting young researchers, we strive to drive meaningful advancements in the field and ensure it receives the recognition and resources it deserves. We are deeply committed to supporting initiatives that empower scientists and promote collaboration, mentorship, and innovation.

Sponsoring this initiative is more than an investment—it’s a commitment to the future of aging science and a healthier, longer life for all.

As we look to the future, we are inspired by the passion and talent within this growing field. Together, through continued collaboration and investment, we can shape a world where aging research leads to healthier and longer lives.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

Tribute to Dr. Mikhail (Misha) Blagosklonny

Dr. Mikhail (Misha) Blagosklonny

It is with great sadness and heavy heart that we announce the recent passing of Dr. Mikhail (Misha) V. Blagosklonny, our beloved Editor-in-Chief. Misha succumbed to metastatic lung cancer after a courageous battle.

Dr. Blagosklonny will be remembered as a brilliant and extraordinary scientist who dedicated his life to science. He was a visionary thinker, who made highly original contributions to cancer and aging research that were often ahead of their time. 

Dr. Blagosklonny was born into a family of scientists. His mother, Professor of Medicine Yanina V. Blagosklonnaya, specialized in endocrinology and was a talented teacher, mentoring several generations of medical students. His father, Professor Vladimir M. Dilman, was a brilliant gerontologist, endocrinologist and oncologist, known for being a very charismatic person. He was the first person to encourage Misha to think about nature, aging, and philosophy.

Misha was a theorist by nature. While in school, he was deeply interested in physics and dreamed of becoming a theoretical physicist. Eventually, he chose biology, driven to study aging and age-related diseases, including cancer. He started as an experimentalist, but over the years, he became a theoretical biologist. In a way, his dream came true. 

After earning his MD/PhD in cardiology and experimental medicine from Pavlov First State Medical University of St. Petersburg, Dr. Blagosklonny was awarded a prestigious Fogarty Fellowship from the National Institutes of Health (NIH) in Bethesda, MD. During his productive fellowship at the National Cancer Institute (NCI) in Dr. Leonard M. Neckers’s laboratory, he co-authored 18 publications in diverse areas of cancer research and was the last author on a clinical phase I/II trial paper. Then, he held a brief but productive senior research fellowship at the University of Pennsylvania in Dr. Wafik S El-Deiry’s laboratory before returning for several years to the NCI, where he collaborated with Dr. Tito Fojo. During those years, Dr. Blagosklonny co-authored over 30 research articles covering various topics in cancer research, including targeting HSP90, p53, Bcl2, Erb2, and Raf-1.

It was also at that time that, as a sole author, he published several experimental and theoretical papers encompassing the most important themes in his scientific career.

The first key theme focused on the selective protection of normal cells during cancer therapy. Despite the dogma, Dr. Blagosklonny showed that drug resistance provides opportunities for protection of non-resistant normal cells with selective killing of drug-resistant cancer cells. The original concept, titled “Drug-resistance enables selective killing of resistant leukemia cells: exploiting of drug resistance instead of reversal,” was published in Leukemia in 1999. The idea was so unconventional that, at first, it was incorrectly cited as “reversal of resistance” instead of “exploiting of resistance.”

The renowned, world famous scientist Dr. Arthur Pardee was so impressed by Dr. Blagosklonny’s idea that he visited the NCI to meet Mikhail, and in 2001 they co-authored the paper “Exploiting cancer cell cycling for selective protection of normal cells.” Later, when Misha launched Oncotarget, Dr. Pardee became one of the journal’s first Founding Editors.

Dr. Blagosklonny continued to develop the concept of normal cells protection in the following years. These are the most essential publications on this topic: 

The second key theme was Dr. Blagosklonny’s innovative research method to generate new knowledge and ideas by synthesizing facts and observations from seemingly unrelated fields. This concept was published in Nature in 2002, titled “Conceptual biology: Unearthing the gems.”

The most significant outcome of this concept was the development of the hyperfunction (or quasi-programmed) theory of aging and the discovery of rapamycin as a potential anti-aging drug. Dr. Blagosklonny first published this idea in 2006, titled “Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition.” Dr. Michael Hall, who discovered the protein TOR (Target of Rapamycin), credited Dr. Blagosklonny for “connecting dots that others don’t even see” in a Scientific American publication.

Dr. Blagosklonny held several faculty positions before joining Roswell Park Comprehensive Cancer Center as Professor of Oncology in 2009, and most recently served there as an adjunct faculty member. In his later years, Dr. Blagosklonny continued to develop his hyperfunction theory of aging and published extensively on the prevention of cellular senescence by rapamycin and other mTOR inhibitors, on cancer (an age-related disease) prevention by slowing down organismal aging, and on combinations of potential anti-aging drugs for use in humans. 

These are just a few essential publications on those topics from more than 200 papers:

Dr. Blagosklonny has published more than 290 papers in peer-reviewed journals, serving as the first, last, or sole author on nearly all of his papers.

Dr. Blagosklonny was also a very passionate editor. He always dreamed of being an editor. It all began in 2002 when he was invited to become an Editor-in-Chief of the journal Cell Cycle, a position he held for more than 16 years.

Understanding the importance of sharing scientific information without borders, he formulated the idea to launch journals for scientists, by scientists. Since cancer and aging research were always the main focus of his scientific interests, Dr. Blagosklonny, in collaboration with his colleagues, founded Aging in 2009 (co-editors-in-chief: the late Judith Campisi and David Sinclair) and Oncotarget in 2010 (co-editor-in-chief: Andrei Gudkov). Both journals are renowned for their outstanding Editorial Boards, innovative approaches, and significant popularity within the scientific community.

In 2012, Dr. Blagosklonny founded Oncoscience, a unique journal that publishes free of charge for both authors and readers. It can be considered a philanthropic endeavor.

In addition, Dr. Blagosklonny has served as an associate editor or a member of the editorial board of such journals as Cancer Research, International Journal of Cancer, Leukemia, Cell Death Differentiation, Cancer Biology & Therapy, American Journal of Pathology, Autophagy, and others.

Misha was a funny and witty person, who always had very interesting and unconventional opinions about various topics and was always looking for the roots of different matters. Everyone who knew him for a long time felt that they grew as a person because of his influence. He realized himself in this life as a scientist, editor, family man and a friend.

Dr. Blagosklonny envisioned his cancer battle as a mission to explore how metastatic cancer can be treated with curative intent. He published several articles about his battle, sharing original ideas and pushing the boundaries of cancer treatment in collaboration with his doctors. In his own words, Dr. Blagosklonny was near-curing of incurable cancer. He was in remission about two years and stayed active until the last days.

Dr. Blagosklonny passed away at his home in Boston, MA.

A special thank you to his colleagues and friends, who continuously supported Misha during his cancer battle: Dr. Tito Fojo, Dr. Wafik El-Deiry, Dr. Andrei Gudkov, Dr. Vadim Gladyshev and Dennis Mangan, to name a few.

He will be deeply missed.

–The entire staff of Impact Journals, LLC

Dr. Blagosklonny’s Battle With Cancer (Part 1)

“Diagnosed with numerous metastases of lung cancer in my brain in January 2023, I felt compelled to accomplish a mission.”

BUFFALO, NY- January 22, 2024 – On January 3, 2024, Mikhail V. Blagosklonny M.D., Ph.D., from Roswell Park Comprehensive Cancer Center published a new brief report in Oncoscience (Volume 11), entitled, “My battle with cancer. Part 1.”

“In January 2023, diagnosed with numerous metastases of lung cancer in my brain, I felt that I must accomplish a mission. If everything happens for a reason, my cancer, in particular, I must find out how metastatic cancer can be treated with curative intent. This is my mission now, and the reason I was ever born. In January 2023, I understood the meaning of life, of my life. I was born to write this article. In this article, I argue that monotherapy with targeted drugs, even when used in sequence, cannot cure metastatic cancer. However, preemptive combinations of targeted drugs may, in theory, cure incurable cancer. Also, I share insights on various topics, including rapamycin, an anti-aging drug that can delay but not prevent cancer, through my personal journey.”

Read the full paper: DOI: https://doi.org/10.18632/oncoscience.593 

Correspondence to: Mikhail V. Blagosklonny

Emails: [email protected], [email protected]  

Keywords: lung cancer, brain metastases, capmatinib, resistance, MET

About Oncoscience

Oncoscience is a peer-reviewed, open-access, traditional journal covering the rapidly growing field of cancer research, especially emergent topics not currently covered by other journals. This journal has a special mission: Freeing oncology from publication cost. It is free for the readers and the authors.

To learn more about Oncoscience, visit Oncoscience.us and connect with us on social media:

For media inquiries, please contact [email protected].

Dr. Mikhail Blagosklonny on Rapamycin Longevity Series

The world’s leading Rapamycin researcher, Dr. Mikhail Blagosklonny, has a long background in cancer research and one important discovery he made around 2000 was that Rapamycin slowed down senescent cancer cells in different ways. After that step-by-step, his interest in the longevity field increased and he developed the very interesting hyperfunction theory of aging.

He has made a huge contribution in moving the Rapamycin longevity field forward and his research papers have impacted many people. For example, the Rapamycin physician Alan Green who – thanks to these papers – took the decision in 2017 to start prescribing Rapamycin off label. Today, Alan Green has the biggest clinical experience in the area with more than 1,200 patients. A lot of other physicians have after that also taken these steps and one of those, for example, is physician Peter Attia.

Interview Table of Contents:

  • 02:32 Current situation and mission
  • 04:07 Why did Rapamycin not prevent his cancer?
  • 06:33 He develops a new type of cancer treatment
  • 08:32 Hyperfunction theory of age-related diseases
  • 10:38 mTOR drives age-related diseases
  • 13:00 Hyperfunction theory and the car analogy
  • 17:20 Difference between new and old version of hyperfunction theory
  • 19:58 Prediction based on hyperfunction theory
  • 21:38 Rapamycin seems to work at any age
  • 23:55 Rapamycin will not make you immortal
  • 26:21 Rapamycin delays lung cancer in mice
  • 27:44 Hyperfunction theory and hormesis
  • 29:13 Rapamycin combination with fasting or calorie restriction
  • 30:33 Rapamycin combination with Acarbose or low carb diet
  • 31:40 Rapamycin combination with exercise
  • 33:04 Exercise and longevity effect
  • 36:10 mTOR sweet spot
  • 38:44 Why do centenarians live a long life?
  • 40:36 Theory of accumulation of molecular damage
  • 44:04 Hyperfunction theory was initially rejected
  • 47:47 Rapamycin research that is missing
  • 51:44 Rapamycin and bacterial infection
  • 53:30 Rapamycin side effect on longevity dose regime
  • 55:50 Rapamycin and pseudo-diabetes
  • 58:51 Rapamycin combination of Acarbose or low carb diet
  • 1:00:09 Rapamycin and increase in lipids
  • 1:02:19 mTOR, mTORC1 and mTORC2
  • 1:05:22 Mikhail’s self-experimentation with Rapamycin
  • 1:10:41 Rapamycin and traditional medical care
  • 1:11:13 Rapamycin and unacceptable side effects
  • 1:14:26 Rapamycin and combinations to avoid
  • 1:16:55 Rapamycin and high protein intake
  • 1:18:08 Best time to start taking Rapamycin
  • 1:21:00 Does Rapamycin prevent cancer or not?
  • 1:23:52 Autophagy is a double-edged sword
  • 1:26:51 Important insight from his cancer
  • 1:28:38 Rapamycin rebound effect
  • 1:30:24 Difference between theory and practice
  • 1:32:45 Mikhail’s cancer and cancer treatment
  • 1:37:36 Rapamycin and danger

Dr. Blagosklonny’s Links:

Rapamycin resources:

Disclaimer from host Krister Kauppi:

The podcast is for general information and educational purposes only and is not medical advice for you or others. The use of information and materials linked to the podcast is at the users own risk. Always consult your physician with anything you do regarding your health or medical condition.

Aging’s Scientific Integrity Process

The open-access journal Aging recently launched a new webpage showcasing the full Aging Scientific Integrity Process.

Aging banner
Listen to an audio version of this press release

BUFFALO, NY-Novembe8, 2022 – Scientific integrity is a crucial component of scholarly publishing for any credible journal. Peer-reviewed, open-access journal Aging (listed as “Aging (Albany NY)” by Medline/PubMed and “Aging-US” by Web of Science) has recently presented its Scientific Integrity process.

Launched in 2009, Aging is an open-access biomedical journal dedicated to publishing high-quality, aging-focused research. Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. 

Aging has a scientific integrity process to ensure that publications meet a number of scrupulous criteria for authenticity and integrity. Each published paper is thoroughly analyzed by diligent reviewers and services, including multiple in-house developed image forensics softwares. A growing industry of digital technologies, tools and ideas are constantly being added to Aging’s scientific integrity toolbox. 

Aging’s Scientific Integrity process is built upon six critical components:

  1. Easily Accessible Ethics Statements
  2. Devotion to Industry Standards for Scientific Publishing
  3. Rigorous and Insightful Peer Review
  4. Detection and Zero-Tolerance of Plagiarism
  5. Leading-Edge Image Forensics
  6. Post-Publication Investigations (if needed)

You can read about each of these components in greater detail on Aging’s new Scientific Integrity webpage

The new webpage also depicts publishing statistics in a detailed graph (below)—showcasing a visual representation of the number of post-publication corrections and retractions by Aging compared to the industry average, between 2010 and 2022. As of September 2022, Aging’s average rate of corrections/retractions since 2009 is a low 2.33%. The industry average correction/retraction rate is 3.80%. 

Image forensics corrections/retractions (published & pending) as a percent of IF-eligible articles in Aging, 2009-2022

Aging’s highly-effective scientific integrity process allows researchers to read, share and cite Aging papers with confidence.

Click here for Aging’s full Scientific Integrity Process.

AGING (AGING-US) VIDEOS: YouTube | LabTube | Aging-US.com

Please visit our website at www.Aging-US.com​​ and connect with us socially:

For media inquiries, please contact [email protected].

Aging-US: Hallmarks of Cancer and Hallmarks of Aging

“Hyperfunctional signaling directly drives age-related diseases.”

— Mikhail Blagosklonny, M.D., Ph.D.

Listen to an audio version of this press release

BUFFALO, NY- May 18, 2022 – Dr. Mikhail Blagosklonny published his new review paper in Aging (Aging-US) Volume 14, Issue 9, entitled, “Hallmarks of cancer and hallmarks of aging.”

In this review, Dr. Blagosklonny expands on Gems and de Magalhães’ notion that canonic hallmarks of aging are superficial imitations of the hallmarks of cancer. He takes their work a step further and proposes the hallmarks of cancer and aging based on a hierarchical principle and the hyperfunction theory.

“Here I present the hallmarks of cancer, depicted as a circle by Hanahan and Weinberg [1], not as the circle but hierarchically, from molecular levels to the organism (Figure 1).”

Figure 1. Hierarchical representation (from molecular to organismal levels) of the original hallmarks of cancer based on Hanahan and Weinberg. See text for explanation.

Next, Dr. Blagosklonny depicts the hallmarks of aging suggested by López-Otín et al. based on the hierarchical principle. 

“This representation renders hallmarks tangible but reveals three shortcomings (Figure 2).”

Figure 2. Hierarchical representation of the hallmarks of aging based on López-Otín et al. See text for explanation.

The first shortcoming that Dr. Blagosklonny notes is the lack of hallmarks on the organismal level. The second is that the relationship between hallmarks on different levels is unclear. The third is that the inclusion of genetic instability as a hallmark is based on the theory that aging is caused by the accumulation of molecular damage. 

“The molecular damage theory was refuted by key experiments, as discussed in detail [44–51].” 

Dr. Blagosklonny then uses the hyperfunction theory to arrange the hierarchical hallmarks of aging.

“Let us depict hallmarks of aging, according to the hyperfunction theory of aging (Figure 3).”

Figure 3. Hierarchical hallmarks of aging based on hyperfunction theory, applicable to humans. Non-life-limiting hallmarks are shown in brown color. See text for explanation.

Dr. Blagosklonny continues by discussing the key to understanding aging and aging as a selective force for cancer. He concludes this review by discussing the common hallmarks of cancer, aging and cell senescence.

“In organismal aging, cancer and cellular senescence, the same key signaling pathways, such as mTOR, are involved. This is why the same drugs, such as rapamycin, can suppress all of them.”

DOI: https://doi.org/10.18632/aging.204082 

Correspondence to: Mikhail V. Blagosklonny 

Email: [email protected][email protected] 

Keywords: oncology, carcinogenesis, geroscience, mTOR, rapamycin, hyperfunction theory

Follow Dr. Blagosklonny on Twitter: https://twitter.com/Blagosklonny

AGING (AGING-US) VIDEOS: YouTube | LabTube | Aging-US.com

About Aging-US:

Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Follow Aging on social media: 

For media inquiries, please contact [email protected].

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###

Press Release: Aging’s Latest Impact Factor

In June 2021, Web of Science (Clarivate Analytics) released their 2020 JCR Impact Factor. Aging‘s 2020 impact factor is 5.682.

In June 2021, Web of Science (Clarivate Analytics) released their 2020 JCR Impact Factor. Aging is pleased to report that our 2020 impact factor is 5.682.
Listen to an audio version of this announcement

BUFFALO, NY-August 20, 2021 – Aging is indexed by Web of Science: Science Citation Index Expanded (abbreviated as Aging‑US). In June 2021, Web of Science (Clarivate Analytics) released their 2020 JCR Impact Factor. Aging is pleased to report that our 2020 impact factor is 5.682. This number has increased from last year’s 4.831. Without self-citation, Aging’s 2020 impact factor is 5.279.

Aging is listed in the Web of Science: Science Citation Index Expanded in two categories: Cell Biology and Geriatrics & Gerontology. According to the Journal Citation Indicator (JCI), Aging is ranked in the Q1 quartile in both categories. 

Since 2009, Aging has published research papers in all fields of aging research including, but not limited to, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan.

This journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, and prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

To learn more about Aging, publication standards, and past or current issues, visit www.aging-us.com.

For media requests, please contact [email protected].

Follow Aging on social media: 

About Impact Journals:

Impact Journals is an open-access publisher of research journals in biomedical sciences. Our publications focus on topics surrounding cancer research and all fields of aging research. Our mission is to provide scientists with the opportunity to share their exceptional discoveries, offer services that enable rapid dissemination of results, and to present vital findings from the many fields of biomedical science.

Impact Journals LLC

6666 E.Quaker St. Ste. 1 

Orchard Park, NY 14127

  • Follow Us